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Abstract The objectives of this study were: 1) to reconstruct 
the ventricular 3-D geometry by processing intracardiac echo 
(ICE) images, 2) to reconstruct the nesting position and 
orientation of the mapping catheters inside the ventricle, 3) 
integrate the geometrical information with the cardiac activity 
data recorded with the catheter and 4) to provide anatomic 
localization of electrical events during clinical ventricular 
tachycardia (VT). We employed commercially available 64-
electrode mapping catheters, ICE equipment, a custom designed 
EP recording system and custom reconstruction software. In 
vitro, the positions of basket catheter electrodes were identified 
correctly. During clinical use, the basket electrode positions were 
not identified reliably by ICE. However, the nesting position of 
the basket was identified correctly. The custom software 
integrated the geometrical information and cardiac activity data 
off line, during the procedure. Electrical events occurring 
during VT were correctly displayed on the reconstructed 
geometry. 
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I. INTRODUCTION 
 

 Recent studies underscore the importance of anatomic 
mapping. Patients that have been ablated in the pulmonary 
vein (PV) region reported ulterior stenosis. Anatomic 
reconstruction by CT has helped understand the frequency of 
occurrence and effects of PV stenosis [1]. Our group 
presented that the bi-atrial activation sequence became well 
understood when cardiac activity data and anatomic 
information were combined [2]. By 3-D ICE reconstruction, 
Suzuki et al. presented clinical evidence that patients with 
atrial flutter may have anatomic abnormalities at the crista 
terminalis [3]. Simon et al. also report on the efficacy of right 
atrial mapping combined with anatomic reconstruction [4]. 
Our goal was to investigate the efficacy of electro-anatomical 
mapping that integrates correct geometrical information, as 
reported by ICE, with cardiac activity data acquired at 
multiple sites simultaneously using a basket catheter. 
 

II. METHODS AND APPARATUS 
 

 For mapping, we used a 64-electrode basket catheter 
(Constellation, Boston Scientific). The electrodes were 
distributed on 8 self-expending nitinol splines, 8 electrodes 
per spline. The shaft of the catheter was 8F diameter and was 
introduced in the heart by percutaneous deployment through a 
8.5F sheath. The data collected by the 64 electrodes were 
acquired with a custom mapping system (Toronto General) 
that employed a sampling frequency of 2 kHz, gaining of 
10000 and digital filtering in the band 1-300 Hz. The system 
was battery operated to secure a very high signal-to-noise 
ratio (SNR). During the mapping process, the activation times 
were selected from unipolar electrograms (EGM), the 
dynamic activation maps were constructed from bipolar 
EGMs, 3-D maps were created using bilinear interpolation on 

a grid of 64 by 256 points. For animation purposes, the 
dynamic data playback step was 40 samples. 
 The ICE system consisted of 9F 9MHz rotational ICE 
catheters (UltraView, Boston Scientific) connected to an ICE 
console (ClearView, Boston Scientific). The ultrasound 
transducer inside the ICE catheter rotated at 30 rotation/s. The 
ICE console reconstructed real-time 2-D images from the raw 
data received from the ICE catheter. In order to analyze 3-D 
geometries, the ICE catheter was pulled back, with the basket 
catheter in place, at a constant speed of 1 mm/s. To minimize 
motion artifacts, the ICE catheter was sustained and stabilized 
inside a 9.5F sheath. The 2-D images were synchronized at 
end diastole and then digitized using an off-the-shelf video 
capture board (Dazzle). The digitized images were processed 
using custom software (Boston Scientific). A total of 64 2-D 
slices were used to recreate the geometry of interest. The 
slices were, on average, separated 0.8 mm apart. The 3-D 
geometry was rendered using OpenGL code and bilinear 
interpolation. 
 After the 3-D geometry of the chamber of interest was 
reconstructed, the cardiac activity data were added as a fourth 
dimension. The 4-D maps represented cardiac activity 
isochronally or dynamically. 
 The right ventricular (RV) procedures consisted of 
deploying a 4-electrode pacing catheter at the apex of the RV, 
deploying and fitting the basket catheter into the RV via the 
Inferior Vena Cava (IVC), by passing through the Tricuspid 
Valve (TV), and of deploying the ICE catheter into the RV 
via the IVC and TV. 
 The left ventricular (LV) procedures consisted of 
deploying the pacing catheter in the RV, deploying the basket 
catheter into the LV retrograde, through the Aortic Valve, and 
of deploying the ICE catheter into the LV transseptally via 
the IVC, through the Fossa Ovalis and through the Mitral 
Valve. 
 

III. RESULTS 
 

A. In Vitro reconstruction of basket position and electrode 
location 
 

 With the basket catheter fully expended in a saline tank, 
the ICE catheter was pulled back at 1-mm/s speed and images 
were acquired as explained above. The 2-D ICE images 
revealed that the basket electrodes (made of Pt-Ir) displayed a 
ringing reflection pattern (Fig. 1). Based on the known 
pullback velocity, the image of the basket was reconstructed 
and compared against its actual orientation and position. The 
reconstructed and actual sizes are shown in Fig. 2(a) and (b). 
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Fig. 1. Basket electrodes display a ringing reflection pattern 
when placed in the ICE imaging plane. 
 

 
  (a)   (b) 
Fig. 2. (a) Reconstructed image of a 60-mm basket. (b) 
Actual size of the 60-mm basket. 
 

B. In Vivo reconstruction of basket position and electrode 
location 
 

 Figure3 shows the reflection pattern produced by basket 
splines in the RV. The contrast is not as good as in the in vitro 
images. Consequently, it was more difficult to detect the 
electrode location in vivo. Figure 4 (a) and (b) show 
reconstructed and actual-size views of a 75-mm basket that 
was deployed in the LV. Figure 4 (a) correctly indicates that 
the basket was compressed radially while deployed in the LV. 

 
Fig. 3. Spline reflections from a basket deployed in the RV. 

 
  (a) (b) 
Fig. 4. (a) Reconstructed image of a 75-mm basket deployed 
in the LV. (b) Actual size of the 75-mm basket. 
 

C. Isochronal mapping of VT 
 

 Five patients have been mapped using these 
technologies. Four patients had idiopathic VT originating 
from the RV outflow tract (RVOT). One patient had ischemic 
left ventricular VT. Figures 5 and 6 show reconstructed 4-D 
maps of the RV and LV activity, respectively. Light colors 
indicate early activity sites. Red (or dark) colors indicate late 
activity sites. The animated 4-D map of the left ventricular 
VT showed re-entrant activity on the superior part of the LV 
septum. In all cases, the 4-D maps pinpointed to the origin of 
the VT that was then treated successfully by applications of 
radiofrequency energy. 
 

IV. DISCUSSION 
 

 We conclude that the in vitro validation of the technique 
produced good results. Clinically, the technique was safe, 
expedient and did not result in any kind of complications. 
Improvements could be made to speed up the image 
processing that renders 3-D volumes. For this purpose, fast 
contour detection algorithms would be beneficial. Using ICE, 
3-D anatomic details of ventricles were accurately identified 
and measured. Mapped electrical activity correlated well with 
the reconstructed 3-D anatomy and fluoroscopy. 4-D 
animation of electrical events provided understanding of 
arrhythmogenic substrates. Use of ICE and basket data 
provides unique anatomic nesting of electrophysiological 
information. Combination of the two techniques warrants 
further clinical investigation 
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Fig. 5. Early site of RV activity located at the RVOT. 
 

 
 
Fig. 6. Snapshot from the re-entrant sequence of LV 
arrhythmic depolarization on the superior side of the LV 
septum. 
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